Search for Mutation-Sensitive Genome Sites Yields Tool for Finding Disease Players in Non-Coding Sequences
By considering sequence data for individuals assessed through the 1000 Genomes Project, a team led by researchers from Yale University and Wellcome Trust Sanger Institute came up with a computational method for prioritizing potential disease culprits — including those in non-protein-coding parts of the genome. As they reported online today in Science , the researchers sifted through SNP profiles in coding and non-coding sequences in 1,092 genomes, focusing on functionally annotated areas. With the help of information from the ENCODE project, mutation databases, and other data sources, they narrowed in on sequences that seem especially sensitive to change. The group tapped these mutation-sensitive sites to develop an approach called FunSeq, which proved useful for uncovering new apparent driver mutations using sequences from around 90 cancer genomes. These included almost 100 driver candidates in non-coding sequences, according to study authors, who noted that FunSeq is expected...