GNA-glycerol nucleic acid—a synthetic analog of DNA
“Everyone in DNA nanotechnology is essentially limited by what they can buy off the shelf,” said Chaput, who is also an ASU assistant professor in the Department of Chemistry and Biochemistry. “We wanted to build synthetic molecules that assembled like DNA, but had additional properties not found in natural DNA.”
The DNA helix is made up of just three simple parts: a sugar and a phosphate molecule that form the backbone of the DNA ladder, and one of four nitrogenous bases that make up the rungs. The nitrogenous base pairing rules in the DNA chemical alphabet fold DNA into a variety of useful shapes for nanotechnology, given that "A" can only form a zipper-like chemical bond with "T" and "G" only pair with "C."
In the case of GNA, the sugar is the only difference with DNA. The five carbon sugar commonly found in DNA, called deoxyribose, is substituted by glycerol, which contains just three carbon atoms.
In nature, many molecules important to life like DNA and proteins have evolved to exist only as right-handed. The GNA structures, unlike DNA, turned out to be ‘enantiomeric’ molecules, which in chemical terms means both left and right-handed.
“Making GNA is not tricky, it’s just three steps, and with three carbon atoms, only one stereo center,” said Chaput. “It allows us to make these right and left-handed biomolecules. People have actually made left-handed DNA, but it is a synthetic nightmare. To use it for DNA nanotechnology could never work. It’s too high of a cost to make, so one could never get enough material.”
Do you want to know more?
Comments